Sorry, your browser cannot access this site
This page requires browser support (enable) JavaScript
Learn more >

摘抄自Stack Project 和J. Alper 的stack and moduli. Descent theory 主旨在于如何进行base change的逆过程. 最重要的结果便是faithful flat morphism 可以induce 出category of quasi-coherent sheaves 和category of quasi-coherent sheaves with descent data 的等价, 进而导出一系列morphism 上的性质. 在moduli theory 中descent theory 主要用于gluing data.

Descending quasi-coherent sheaves

Proposition 1. If ϕ:AB\phi: A\to B os a faithfully flat map, then

0AϕBbb1b1bBAB0\to A\xrightarrow{\phi}B\begin{array}{c} \xrightarrow{b\mapsto b\otimes 1} \\ \\[-4.3ex] \xrightarrow[b\mapsto 1\otimes b]{} \end{array}B\otimes_{A}B

is exact. More generally, if MM is an AA-module, then

0Mmm1MABmbmb1mbm1bMABAB0\to M\xrightarrow{m\mapsto m\otimes 1} M\otimes_{A} B\begin{array}{c} \xrightarrow{m\otimes b\mapsto m\otimes b\otimes 1} \\ \\[-4.3ex] \xrightarrow[m\otimes b\mapsto m\otimes 1\otimes b]{} \end{array} M\otimes_{A}B\otimes_{A}B

is exact.

Proposition 2. Let f:SSf:S'\to S be an fpqc morphism of schemes.

Let F\mathcal{F} amd G\mathcal{G} be quasi-coherent OS\mathcal{O}_{S}-modules. Let p1,p2:S×SSp_{1}, p_{2}: S'\times_{S}S' be two projections and q:S×SSSq:S'\times_{S}S'\to S be the composition fpif\circ p_{i}/ Then the sequence

0HomOsF,GfHomOS(fF,fG)p1p2HomOS×SS(qF,qG)0\to \mathrm{Hom}_{\mathcal{O}_{s}}{\mathcal{F},\mathcal{G}}\xrightarrow{f^{*}}\mathrm{Hom}_{\mathcal{O}_{S}'}(f^{*}\mathcal{F},f^{*}\mathcal{G})\begin{array}{c} \xrightarrow{p_{1}^{*}} \\ \\[-4.3ex] \xrightarrow[p_{2}^{*}]{} \end{array}\mathrm{Hom}_{\mathcal{O}_{S'\times_{S}S'}}(q^{*}\mathcal{F},q^{*}\mathcal{G})

is exact.

Let HH be the quasi-coherent OS\mathcal{O}_{S'}-module and α:p1Hp2\alpha:p_{1}^{*}H\to p_{2}^{*} be an isomorphism of OS×SS\mathcal{O}_{S'\times_{S}S'}-module satisfying the cocycle condition p23αp12α=p13αp_{23}^{*}\alpha\circ p_{12}^{*}\alpha =p_{13}^{*}\alpha on S×SS×SSS'\times_{S}S'\times_{S}S'. Then there exists a quasi-coherent OS\mathcal{O}_{S}-module G\mathcal{G} and an isomorphism ϕ:HfG\phi:H\to f^{*}\mathcal{G} such that p1ϕ=p2ϕαp_{1}^{*}\phi=p_{2}^{*}\phi\circ \alpha on S×SSS'\times_{S}S'. The data (G,ϕ)(\mathcal{G},\phi) is unique up to isomorphism. The cocycle condition can be visualized as

p¤12p¤1Hp¤12p¤2Hp¤13p¤1Hp¤23p¤1Hp¤13p¤2Hp¤23p¤2Hp¤12®p¤13®p¤23®

Descending morphisms

Proposition 3. Let YY be a scheme and f:SSf:S'\to S be a fpqc morphism of schemes. If g:SYg:S'\to Y is a morphism such that gp1=gp2g\circ p_{1}=g\circ p_{2} then there exists a unique morphism h:SYh:S\to Y such that g=hfg=h\circ f.

S0£SS0S0SYp1p2fgh

Proposition 4. Let f:SSf:S'\to S be an fpqc morphism of schemes.

If STS\to T os a morphism of schemes and YY is a TT-scheme then

Hom(S,Y)Hom(S,Y)Hom(S×SS,Y)\mathrm{Hom}(S,Y)\to \mathrm{Hom}(S',Y)\begin{array}{c} \to \\ \\[-4.6ex] \to \end{array}\mathrm{Hom}(S'\times_{S}S',Y)

is exact.

If XX, YY are schemes over SS, then

HomS(X,Y)HomS(XS,YS)HomS×SS(XS×SS,YS×SS)\mathrm{Hom}_{S}(X,Y)\to \mathrm{Hom}_{S'}(X_{S'},Y_{S'})\begin{array}{c} \to \\ \\[-4.6ex] \to \end{array}\mathrm{Hom}_{S'\times_{S}S}(X_{S'\times_{S}S'},Y_{S'\times_{S}S'})

is exact.

Descending schemes

Proposition 5. Let f:SSf:S'\to S be an fpqc morphism of schemes. If ZSZ'\subset S' is a closed (resp. open) subscheme such that p11(Z)=p21(Z)p_{1}^{-1}(Z')=p_{2}^{-1}(Z') as subschemes of S×SSS'\times_{S}S', then there exists a closed (resp. open) subscheme ZSZ\subset S such that Z=f1(Z)Z'=f^{-1}(Z).

Proposition 6. Let f:SSf:S'\to S be an fpqc morphism of schemes. If XSX'\to S' is affine (resp. quasi-affine) morphism and α:p1(X)p2(X)\alpha:p_{1}^{*}(X')\xrightarrow{\sim} p_{2}^{*}(X') is an isomorphism over S×SSS'\times_{S}S' satisfying p23αp12α=p13αp_{23}^{*}\alpha\circ p_{12}^{*}\alpha=p_{13}^{*}\alpha, then there exists an affine (resp. quasi-affine) morphism XSX\to S of schemes, and an isomorphism ϕ:Xf(X)\phi:X'\to f^{*}(X) over SS' such that p1ϕ=p2ϕαp_{1}^{*}\phi=p_{2}^{*}\phi\circ \alpha.

Theorem 1. Let f:SSf:S'\to S be an fpqc morphism of schemes. If XSX'\to S' is locally quasi-finite and separated morphism of schemes. α:p1(X)p2(X)\alpha:p_{1}^{*}(X')\xrightarrow{\sim} p_{2}^{*}(X'). Then there exists an locally quasi-finite and separated morphism XSX\to S of schemes and an isomorphism ϕ:Xf(X)\phi:X'\to f^{*}(X) over SS' such that p1ϕ=p2ϕαp_{1}^{*}\phi=p_{2}^{*}\phi\circ \alpha.

Proposition 7. Let GTG\to T be an fppf affine group scheme and let f:SSf:S'\to S be an fpqc morphism of schemes over TT. If PSP'\to S' is a principal GG-bundle and α:p1Pp2P\alpha:p_{1}^{*}P'\xrightarrow{\sim}p_{2}^{*}P' is an isomorphism of principal GG-bundle. Then there exists a principal GG-bundle PSP\to S and an isomorphism ϕ:PfP\phi:P'\to f^{*}P of principal GG-bundles such that p1ϕ=p2ϕαp_{1}\phi=p_{2}^{*}\phi\circ \alpha.

Descending properties

Proposition 8. Let f:SSf:S'\to S be an fpqc morphism of schemes.

A homomorphism FG\mathcal{F}\to \mathcal{G} of quasi-coherent OS\mathcal{O}_{S'}-modules is an isomorphism (resp. injective, surjective) if and only if fFfGf^{*}\mathcal{F}\to f^{*}\mathcal{G} is.

A quasi-coherent OS\mathcal{O}_{S}-module F\mathcal{F} is of finite type (resp. of finite presentation, flat, vector bundle, line bundle) if and only if fGf^{*}\mathcal{G} is. If SS and SS' are noetherian, then the same holds for coherence.

A quasi-coherent OX\mathcal{O}_{X}-module F\mathcal{F} on a SS-scheme XX is flat over SS if and only if the pullback of F\mathcal{F} to XSX_{S'} is flat over SS'.

Proposition 9. Let XYX\to Y be an fpqc morphism of schemes. If XX is quasi-compact (resp. locally noetherian, noetherian, integral, reduced, normal, regular), then so is YY.

Proposition 10. Let XXX'\to X be an fpqc morphism of schemes. If XYX\to Y is a morphism such that XXYX'\to X\to Y is smooth (resp. etale), then XYX\to Y is smooth (resp. etale).

Proposition 11. If XYX\to Y is an fppf morphism of schemes, then XX is locally noetherian if and only if YY is.

If XYX\to Y is surjective smooth morphism of schemes, then XX is reduced (resp. normal, regular) if and only if YY is.

Proposition 12. Let SSS'\to S be an fpqc morphism of schemes and P\mathcal{P} be one of the following properties of a morphism of schemes: surjective, quasi-compact, quasi-separated, isomorphism, open immersion, closed immersion, monomorphism, affine, quasi-affine, quasi-compact locally closed immersion, locally of finite type, locally of finite presentation, separated, proper, universally closed, universally open, universally submersive, finite, locally quasi-finite, quasi-finite, flat, fppf, smooth, étale, unramified, or syntomic. Then XSX\to S has P\mathcal{P} if and only if X×SSSX\times_{S} S'\to S' does.

评论